
N-Dimensional Gaussians for Fitting of High Dimensional
Functions

Stavros Diolatzis
stavros.diolatzis@intel.com

Intel Labs
France

Tobias Zirr
tobias.zirr@intel.com

Intel Labs
Germany

Alexander Kuznetsov
alexander.kuznetsov@intel.com

Intel Labs
USA

Georgios Kopanas
georgios.kopanas@inria.fr
Inria, Université Côte d’Azur

France

Anton Kaplanyan
anton.kaplanyan@intel.com

Intel Labs
USA

Ground Truth

Training Time: 16 mins

24 mins

Color-Coded GaussiansOurs

Training Time:

Figure 1: Our method optimizes N-Dimensional Gaussians to approximate high dimensional anisotropic functions in a

few minutes. Our parameterization, culling and optimization-controlled refinement allows us to quickly estimate Gaussian

parameters to represent surface (top) and volume radiance fields (bottom). Top: A synthetic scene with given geometry and

material information creates a 10 dimensional input space. While the Gaussians live on surfaces they can represent rough and

specular reflections by moving faithfully with viewpoint. Bottom: Similarly, 6D Gaussians of position and direction correctly

reconstruct the appearance through the magnifying glass while being consistent with camera movement. We recommend

watching the supplementary video to observe the movement of the complex effects.

ABSTRACT

In the wake of many new ML-inspired approaches for reconstruct-
ing and representing high-quality 3D content, recent hybrid and
explicitly learned representations exhibit promising performance
and quality characteristics. However, their scaling to higher dimen-
sions is challenging, e.g. when accounting for dynamic content
with respect to additional parameters such as material properties,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0525-0/24/07.
https://doi.org/10.1145/3641519.3657502

illumination, or time. In this paper, we tackle these challenges for an
explicit representations based on Gaussian mixture models. With
our solutions, we arrive at efficient fitting of compact N-dimensional
Gaussian mixtures and enable efficient evaluation at render time:
For fast fitting and evaluation, we introduce a high-dimensional
culling scheme that efficiently bounds N-D Gaussians, inspired
by Locality Sensitive Hashing. For adaptive refinement yet com-
pact representation, we introduce a loss-adaptive density control
scheme that incrementally guides the use of additional capacity
towards missing details. With these tools we can for the first time
represent complex appearance that depends on many input dimen-
sions beyond position or viewing angle within a compact, explicit
representation optimized in minutes and rendered in milliseconds.

https://orcid.org/0000-0001-6051-372X
https://orcid.org/0009-0003-1091-3858
https://orcid.org/0009-0001-7084-3391
https://orcid.org/0009-0002-5829-2192
https://orcid.org/0000-0002-8376-6719
https://doi.org/10.1145/3641519.3657502

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Diolatzis et al.

CCS CONCEPTS

•Computingmethodologies→ Reflectance modeling;Computer

graphics.

KEYWORDS

datasets, neural networks, gaze detection, text tagging

ACM Reference Format:

Stavros Diolatzis, Tobias Zirr, Alexander Kuznetsov, Georgios Kopanas,
and Anton Kaplanyan. 2024. N-Dimensional Gaussians for Fitting of High
Dimensional Functions. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Conference Papers ’24 (SIGGRAPH
Conference Papers ’24), July 27-August 1, 2024, Denver, CO, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3641519.3657502

1 INTRODUCTION

Computer graphics has recently seen an influx of new optimization-
based approaches for reconstructing and representing high-quality
graphics content such as complex geometry, lightfields, or high-
fidelity avatars from multiview images. While inspired by machine
learning, where neural networks are often used to handle high-
dimensional data, many of these techniques are optimized for lower-
dimensional domains with well-understood frequency content (e.g.,
spatial or separable spatio-angular domains). In fact, purely ML-
derived approaches, such as implicit neural representations, where
all information is implicitly stored in network weights, are quickly
outperformed by hybrid or explicit representations. In these repre-
sentations learned parameters are directly associated with certain
input dimensions of the overall represented distribution. Thus,
explicit disentanglement of certain query inputs such as spatial co-
ordinates can be used to reduce the data that needs to be accessed
per inference or query. We observe that this trend towards more
explicit representations has led to a limiting of their usefulness for
practical computer graphics problems that require handling higher
input dimensionality, e.g. to handle high-quality lighting under
changing conditions, paired with diverse material properties.

In this paper, we recover this ability to scale to higher num-
bers of input dimensions, for an explicit representation based on
𝑁 -dimensional Gaussian mixtures (GMMs). Efficient splatting of
GMMs for lower-dimensional radiance fields [Kerbl et al. 2023] re-
cently revived interest in such representations. We evaluate two rel-
evant applications, shading synthetic scenes with high appearance
variability, and capturing scenes from images with strong view-
dependent effects, showcased in Figure 1. We tackle two particular
challenges in the construction of compact explicit 𝑁 -dimensional
Gaussian mixtures: (1) recover training and evaluation efficiency for
larger numbers ofmixture components, eachwith high-dimensional
anisotropic distributions; and (2) adaptive refinement of the mixture
representation in the face of unknown domain-specific dependen-
cies or inter-dimensional correlations. We introduce:

• An unconstrained𝑁 -dimensional adaptive Gaussian mixture
representation,

• Fast fitting and evaluation based on a high-dimensional
culling scheme for 𝑁 -D Gaussians inspired by Locality Sen-
sitive Hashing, and

• A domain-independent, loss-adaptive refinement scheme to
arrive at compact and high-quality mixtures.

Our code implementation is available at https://github.com/intel/ngd-
fitting.

2 RELATEDWORK

We review previous work related to high-dimensional fitting, neural
graphics, and rendering of learned representations. We focus on
the most relevant building blocks and refer to the survey by Tewari
et al. [2022] for a more extensive overview.

2.1 High-Dimensional Anisotropic Distribution

Fitting

When fitting distributions varying with respect to high numbers of
input parameters, correlations arising from mixed input types (e.g.,
spatial, angular, path-space, temporal) are hard to predict. The prob-
lem of compactly representing high-dimensional anisotropic distri-
butions is closely related to (unsupervised) clustering [Figueiredo
and Jain 2002], where the meaning of distance and similarity is
reduced with increasing number of dimensions. Locality Sensitive
Hashing (LSH) techniques are an inspiration for our approach to
practically bound and cull our mixture components. The idea of
projection onto random unit vectors [Andoni et al. 2015] for local-
ization and bounding proved particularly useful for us, as e.g. also
used to cut down on attention computations for irrelevant tokens in
Diffusion Models [Kitaev et al. 2020]. To arrive at compact adaptive
representations, many applications use domain knowledge about
the structure of their high-dimensional data distributions, in order
to derive explicit clustering criteria, such as for high-energy paths
in path space for path guiding [Simon et al. 2018], or probes in
radiance caching [Krivánek et al. 2006]. In our general scenario, we
build on careful iterative refinement strategies such as commonly
used for optimizing implicit neural representations [Tewari et al.
2022] and explicit representations [Zhao et al. 2020] alike.

2.2 Gaussian Mixtures in Rendering

Gaussians or Gaussian Mixture Models (GMMs) have been used ex-
tensively in Computer Graphics to represent signals due to their sim-
plicity and convenient mathematical properties. Zhou et al. [2008]
used isotropic Gaussians to speed up volumetric path tracing by
caching volumetric radiance fields. Jakob et al. [2011] fit a hierar-
chical mixture of anisotropic Gaussians to approximate million of
photons with significantly fewer parameters. GMMs have also been
utilized more recently for learning guiding distributions during
path tracing [Vorba et al. 2014] to reduce noise. Such GMMs can
be optimized robustly using expectation maximization even with
noisy training samples. The convenient property of GMMs is that
they can be used for product importance sampling when the both
the known and learned components are available as Gaussians,
resulting in a Gaussian product distribution [Herholz et al. 2016]
that predicts reflected light with high accuracy.

2.3 Implicit Neural Rendering

Neural networks were demonstrated to fit well to radiance fields of
real [Mildenhall et al. 2021] and virtual scenes [2013] when handed
scene coordinates in the right format. Networks have also been
used to estimate the zero-level set of signed distance functions

https://doi.org/10.1145/3641519.3657502
https://github.com/intel/ngd-fitting
https://github.com/intel/ngd-fitting

N-Dimensional Gaussians for Fitting of High Dimensional Functions SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

for neural surface reconstruction [Wang et al. 2021]. After train-
ing, radiance or distance information is stored implicitly within
the network’s weights and biases. For every query point, an infer-
ence pass is required to retrieve the predicted value. Full-image
generation via neural networks [Eslami et al. 2018] conditioned
on observations from a small set of viewpoints and decomposi-
tion of image-space scene information into smaller, less entangled
representations [Granskog et al. 2020] for alternative renditions
have also been studied for neural rendering. Diolatzis et al. [2022]
demonstrate a generator network for variable radiance fields based
on explicit encoding of scene states. They achieve adaptive training
data sampling by a guiding scheme that identifies elusive effects
such as caustics or transparency. Small fully-fused neural networks
that can be trained and evaluated in real time were popularized by
Mueller et al. [Müller et al. 2021] for dynamic radiance caching and
surface representations. NeRF [Mildenhall et al. 2021] demonstrated
that neural radiance field paired with volume ray casting can be
fit to real-world view points and generate novel views with high
quality. In this application the encoding [Tancik et al. 2020] and
parameterization of the inputs can have significant impact on qual-
ity. Ref-NeRF [Verbin et al. 2022] replaced outgoing radiance with
reflected radiance for improved reflections and view dependent
effects.

2.4 Hybrid & Explicit Representations

The findings of neural radiance fields were subsequently reproduced
with more efficient hybrid and explicit representations, where data
structures tailored to the spatio-angular domain are optimized to
store some or all of the information needed to reproduce training
views and synthesize novel views. Octrees were applied to signed
distance fields [Takikawa et al. 2021] and radiance fields [Yu et al.
2021], omitting any neural components while retaining the iterative
training scheme for volume ray casting samples. Dense grids [Sun
et al. 2022], and more memory-efficient hash grids [Müller et al.
2022] jointly optimized with small networks were shown effective
and led to hybrid representations outperforming pure neural rep-
resentations. In generative adversarial networks for objects such
as faces, triplane encodings [Chan et al. 2022] proved effective for
many types of geometry despite their 2D nature. As Radial Basis
Functions [Carr et al. 2001; Dinh et al. 2002] have been shown in the
past to be an efficient representation for 3D reconstruction, Neural
Radial Basis functions were proposed in [Chen et al. 2023]. They
offered increased spatial adaptivity and outperformed grid-based
approaches but extension to N-D would require a unified initial-
ization and refinement scheme. Our approach is inspired by the
recent 3D Gaussian Splatting (3DGS) method [Kerbl et al. 2023]
which demonstrates both impressive quality and performance for
novel view synthesis of real world scenes using lower-dimensional
GMMs, particularly due to their effective empty space skipping by
way of direct projection to the image plane, paired with an efficient
GPU rasterization implementation. Such 3D Gaussian mixtures
also can be turned into meshes as in [Guédon and Lepetit 2023] for
improved editability.

3 METHOD

In the following we describe the key aspects of our method, which
allow us to efficiently arrive at a compact explicit representation
of density functions that are defined on high-dimensional input
domains. For our optimized target representation, we use Gaussian
mixture models which fit well to highly anisotropic distributions
of high-dimensional data. Specifically, we optimize the shape and
position of 𝑛 𝑁 -Dimensional Gaussian components jointly with
learnable color values 𝑐 and an application-dependent parameter 𝑎
for brightness or opacity.

A key ingredient to efficient training is our culling step that
omits any computations relating to Gaussians that are irrelevant to
any current query point, by way of a Locality Sensitive Hashing-
inspired approach that bounds their projections onto random unit
vectors. For adaptive refinement of our optimized representation,
previously proposed schemes with explicit splitting and merging
heuristics become difficult to tune to the sparse distributions of high-
dimensional reference data. We introduce an optimizer-controlled
refinement scheme, which smoothly fades in additional dependent
Gaussians to enhance quality and add details where necessary.

3.1 N-Dimensional Gaussian Parameterization

We parameterize each of our 𝑁 -Dimensional Gaussian components
through its mean m : R𝑁 and its full covariance V : R𝑁 2

:

𝐺V (x −m) = 𝑒−
1
2 (x−m)𝑇 V−1 (x−m) (1)

The scale and rotation parameterization used in previouswork [Kerbl
et al. 2023] is problematic when we operate in 𝑁 dimensions, as
rotations become increasingly difficult to describe. Instead, we opt
for a Cholesky decomposition of V:

V = LL𝑇 (2)

where L is a lower triangular matrix which we optimize directly. We
use an exponential activation function for the diagonal elements
L[𝑖, 𝑖] (𝑥) = 𝑒𝑥 to ensure positive-definiteness and stabilize training.
For the lower triangular elements we restrict them to be in the -1
to 1 range using a sigmoid L[𝑖, 𝑗] (𝑥) = 2 · sigmoid(𝑥) − 1 : 𝑖 < 𝑗 .
Note that up to unitary transformations, the matrix L uniquely
transforms a standard normal distribution 𝐺I to a fitted Gaussian
component 𝐺V=LL𝑇 , which makes the decomposition well-suited
for hierarchical transformations of Gaussians as used in our smooth
optimization-controlled refinement.

3.2 N-Dimensional Gaussians Culling

In order to achieve acceptable performance during training and
inference, we must avoid evaluating all the 𝑁 -D Gaussians for each
query point. If all 𝑁 -3 inputs except world position are constant for
a single image, culling is straight-forward as global conditioning
to the current values x𝑐 = 𝑥4, . . . , 𝑥𝑁 followed by standard spatial
culling as in Kerbl et al. [2023]. In the general case that we aim at,
however, inputs may vary between pixels (e.g. material-dependent
fitting such as for surface roughness or refraction indices), requiring
effective high-dimensional culling before costly projection and
evaluation per pixel.

Our approach to culling is inspired by Locality Sensitive Hashing,
which is sometimes used for high-dimensional approximate nearest

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Diolatzis et al.

N

𝑞

𝑞

Gk

N-Dimensional GaussiansGaussians Culling

Input:

Optimizer

Refinement

𝑞

N 3

Projection to 3D
Output Ground Truth

Figure 2: Our optimization receives a number of query points q of N dimensionality as input. For these given points we

estimate which Gaussians can be discarded safely through our N-Dimensional culling. With the remaining ones we evaluate

for each q our Gaussian mixture either in N dimensions for surface radiance fields or by first projecting the Gaussians to 3D.

Our optimization converges to high quality while it also controlling the introduction of new Gaussians via our Optimization-

Controlled Refinement.

neighbor search. The intuition behind LSH is that projection onto
random vectors within the high-dimensional data space provide
valuable information for estimating and bounding proximity. We
similarly project our Gaussian components onto random unit vec-
tors to quickly discard components for which the query point falls
outside their projected footprint. Given a query point q : R𝑁 and
an 𝑁 -D Gaussian, we project both its mean m and covariance V
onto 𝑘 randomly sampled vectors r : R𝑁 . The projections of the
query point and the Gausssian mean are:

𝑞r = q𝑇 r, 𝑚r = m𝑇 r (3)

To take the Gaussian’s anisotropy into account we also project the
covariance V on the vector r:

𝜎2r = r𝑇Vr (4)

With this projection we can safely cull any Gaussian if:

|𝑞r −𝑚r | < 3𝜎r (5)

i.e. if the query projection is outside the project 3𝜎-confidence
interval. Doing this for all pixels would be costly, instead we do it
for each tile of 16 by 16 pixels, bounding the query point by their
spatial extent. In this way our culling is conservative, i.e. it will
never discard a Gaussian that should have been evaluated.

3.3 Optimization-Controlled Refinement

In the following, we tackle the problem of refining our explicit
Gaussian mixture representation in the face of unknown domain-
specific splitting or merging heuristics (as previously proposed for
e.g. spatio-angular domains [Kerbl et al. 2023; Krivánek et al. 2006;
Ruppert et al. 2020]). Note that heuristics based on auxiliary sta-
tistical estimates become increasingly unreliable with increasing
number of dimensions due to increased scarcity of training samples
w.r.t. any respective combinations of parameter values. In order to
arrive at a general, purely optimizer-controlled solution, we instead
regularly introduce small amounts of additional capacity to our
representation in the form of nested Gaussian components with
a dependency structure that constrains their use: During training,

by default each initial or newly materialized Gaussian component
contains an additional child Gaussian with negligible randomized
contribution, and spanning the full parent Gaussian. In order to
avoid redundant fitting of parent mixture components, the child
Gaussian 𝐺Vc is defined in the reference frame of its parent Gauss-
ian 𝐺Vp by relative parameters U,m𝑢 , thus receiving all parent
updates by default:

Vc = LU(LU)𝑇 , Vp = LL𝑇 , (6)
m𝑐 = Lm𝑢 +m𝑝 . (7)

We visualize this relationship in Figure 3. Thus, divergence of parent
and child Gaussians is caused only in the need of introducing new
details which cannot be represented just by the parent Gaussian.
If such a case arises, meaning the opacity/brightness of the child
Gaussian is increased by the optimizer crossing a threshold of non-
negligible contribution, the child Gaussian is materialized. This
results in both parent and child becoming independent entities
and each is assigned a new default-initialized child Gaussian. Note
that since we also parameterize child covariance in terms of a local
lower triangular matrix U, the materialized child Gaussian is again

Figure 3: We visualize the relationship between parent (blue)

and child (green) Gaussians for different covariance matrices

and means.

N-Dimensional Gaussians for Fitting of High Dimensional Functions SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

parameterized by a lower triangular matrix LU as the product of
two such matrices preserves this property.

Practical Observations. In this scheme, enforcing a dependency
between the parent and child Gaussians is an important factor.
Without this relationship the child Gaussians tend to move outside
the parent Gaussian and become used redundantly. To avoid this,
the covariance of the parent should impact the shape and mean of
the child from the start to guide the optimization into using it only
to enhance the parent Gaussian.

Note that we avoid explicit subdivision in our refinement. In
typical hierarchical subdivision schemes, finding the direction of
the best split axis becomes increasingly complex. In our scheme,
the iterative optimization is responsible for driving any added ca-
pacity of the respresentation into the right direction. In Figure 4 we
show an example of how the refinement introduces details using
dependent Gaussians.

Training Progresses

Figure 4: Our refinement scheme allows the optimizer to

choose where to introduce new Gaussians. In the figure, at

different parts of the training procedure, we show in blue

the already existing Gaussians and in green the ones that

the optimizer has chosen to utilize. Notice the dependent

Gaussians adding details to the chair texture.

Practical Initialization and Refinement Scheduling. We fit our rep-
resentation in phases between refinements of about 300 iterations
each, such that all Gaussians stabilize towards the end of each phase
before any existing child Gaussians are materialized and new chil-
dren added. In the initial phase, we expect all Gaussians to move
and change a lot, therefore we omit any nested child Gaussians until
the initial state is sufficiently converged. Afterwards, the first set of
child Gaussians are introduced and quickly start introducing some
of the finer-grained effects and details. In order to determine which
child Gaussians should be materialized after each phase, we check
their brightness resp. opacity (depending on the application) to see
if they are being utilized, in our experiments we use a threshold
𝑡 = 0.1 for opacity and 𝑡 = 0.01 for brightness. Different values of
this threshold control how easily we want new Gaussians to be in-
troduced versus forcing the optimizer to make do with fewer. Note
that when we introduce new child Gaussians, the overall values
represented by the mixture do not change significantly, since we
avoid any explicit splitting, subdivision, or other perturbation as
used in previous work [Kerbl et al. 2023]. This avoids spiking in
the loss and domain-specific tuning of heuristics. The contribution

threshold 𝑡 is directly related to the expected output and thus an
intuitive hyperparameter overall.

4 APPLICATIONS

Our method offers a powerful representation for fitting high di-
mensional functions with strong anisotropy dependencies between
dimensions. Such dependencies occur between position and direc-
tion for reflections or between position and time in time varying
appearance. We apply our method to two different problems, global
illumination of variable synthetic scenes and novel view synthesis
with an emphasis on capturing view-dependent effects. We focus
on these scenarios as they typically offer sufficiently dense capture
data to allow for the optimization of high-dimensional functions.
We leave generalization with sparser captures for future work.

4.1 Global Illumination with Variability

Neural networks have been utilized to shade synthetic scenes con-
ditioned on fast to render G-Buffers [Diolatzis et al. 2022; Granskog
et al. 2020]. When we apply our 𝑁 -Dimensional Gaussians as a
replacement for the generator networks used in these methods we
achieve high quality within just a few minutes of training.

In this scenario, geometry and material information are given
through the G-Buffers, and each channel of these buffers provides
a dimension for our Gaussians. We evaluate all Gaussians on the
surfaces of the synthetic scene. More specifically the dimensionality
of the Gaussians equals to the G-Buffers’ dimensions plus any addi-
tional variable dimensions. The geometry and material information
include 10 dimensions: world position 𝑥𝑦𝑧, view direction 𝑥𝑦𝑧𝑑𝑖𝑟 ,
albedo 𝑟𝑔𝑏 and roughness 𝑟 . Any variable element of the scene at
a given image has a specific state which is normalized using its
variable range. For example, if an object can move from 𝑥 = −2 to
𝑥 = 2, when it is at 𝑥 = 0 this variable dimension will have a value
𝑣 = 0.5. We concatenate these variable dimensions to the ones from
the G-Buffers.

Since the geometry is given through G-Buffers the Gaussians
have no opacity parameter, the parameter 𝛼 controls instead the
brightness of their color 𝑐 . In other words for a given point on a
surface the color computed from 𝑘 Gaussians is:

𝑐 (x) = 𝐺V1 (x −m1)𝛼1𝑐1 + . . . +𝐺V𝑘
(x −m𝑘)𝛼𝑘𝑐𝑘 (8)

Since we train our method on high dynamic range renderings, we
use an exponential activation for the brightness 𝛼 and a sigmoid
for the color 𝑐 . Our loss function is a relative L2 loss [Lehtinen
et al. 2018], since the ground truth Monte Carlo renderings of our
scenes have some residual noise. We use Mitsuba 3 [Jakob et al.
2022] and its Python bindings to render our scene ground truths
and G-Buffers. To reduce the time generating high quality datasets
for each scene we train on 256 by 256 images and during rendering
use higher resolution 800 by 800 G-Buffers.

To achieve high performance during training and inference, we
analytically compute the gradients for our trainable parameters
and implement their calculations in Taichi [Hu et al. 2019] kernels.

The scenes we showcase have different amounts of variability.
In the Bathroom scene we can change the camera and inspect the
rough reflections of the geometry even though the Gaussians are
evaluated on the surface of the transparent bathroom door. In the

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Diolatzis et al.

Living Room scene we can change the position of the light source
while changing viewpoint. Finally, the Aquarium scene offers some
complex multi bounce effects through the aquarium and the water,
all which are simulated simply with anisotropy. In this scene we
can also control the position of the fish. We showcase these results
in Figure 1, Figure 7 and in our video.

4.2 Volumetric Radiance Fields

Another application where neural networks have been used exten-
sively is novel view synthesis, with methods like NeRF training
a network to store the volumetric radiance field of a scene. One
common bias in both implicit and explicit methods for novel view
synthesis is the reduced representation power in the view direction
component compared to the spatial one. Except for specializedmeth-
ods, this leads to high-frequency reflections being reconstructed
poorly or as duplicate geometry. Such approaches fail in the case
of complex anisotropic reflections and leading to low-quality re-
constructions.

In contrast, a 6D spatio-angular representation constructed us-
ing our method can have as much adaptivity in the angular as in
the spatial domain, and anisotropic relationships between the two
domains are modeled explicitly. We demonstrate our method on
such challenging scenes as the ones in the dataset provided by [Wiz-
adwongsa et al. 2021]. We show this application to demonstrate
the versatility and robustness of our method. To apply our method
to this scenario, we only modify the rendering step, i.e. we apply
a projection from N-D to 3D to our Gaussians (details of the pro-
jection are included in supplemental) and then use the splatting
process from 3DGS. Despite the quite different application of ren-
dering real world scenes our N-D parameterization and dependent
refinement scheme works well, adapting to details and giving high
quality reconstruction in both diffuse and view dependent effects.
We showcase the results in Figure 1, Figure 6 and in the video.

5 COMPARISONS & ABLATIONS

To evaluate the effectiveness and robustness of our method we
compare with implicit, hybrid and explicit methods in our two
different applications.

Specifically for the shading of variable scenes we train a Pixel
Generator network (a MLP network with skip connections) that
has been used in previous methods [Diolatzis et al. 2022; Granskog
et al. 2020], and we use TinyCudaNN [Müller 2021] to train a hash
grid and a small MLP decoder.

For novel view synthesis on sceneswith hard to render anisotropic
reflections we compare against 3D Gaussian Splatting for compara-
ble training time.

Comparison for Synthetic Scenes. We train a deep neural network
(8 layers of 512 features) with the Pixel Generator architecture used
and an implementation of the hash grid encoding for comparison.

For the hash encoding we parameterize xyz using the hash grid,
spherical harmonics for the view direction and an identity encoding
for the rest of the dimensions, all of which is decoded by a 64 feature
2 layers MLP. Despite our method not using any explicit domain
knowledge of the inputs to use different encodings, it achieves
superior quality as showcased in Figure 7. In contrast, the shallow

MLP decoder is unable to handle the collisions of the hash grid
while taking into account the extra 7 input dimensions.

The Pixel Generator is quite a big network and one that needs
close to tens of hours of training to converge. For similar training
times it learns a blurry representation compared to our explicit
optimization (Figure 7).

We give our quantitative evaluations in Table 1 for all 3 methods
and scenes. In Table 4 we also report the iteration timings for each
method. Note that the Hash Grid baseline utilizes Python bindings
to optimized C++ code compared to our method which uses purely
Python.

Table 1: In this table we report Mean Absolute Percentage Er-

ror (MAPE) for each method in our synthetic scenes dataset.

Comparison for Specular Real World Scenes. In this application
we initialize the spatial component and color of our Gaussians,
similarly to 3DGS, using Structure-from-Motion (SfM) [Snavely
et al. 2006] when available. Since these points can create erroneous
Gaussians, after initialization we discard any that have very low
opacity (𝑎 < 0.1). Compared to 3DGS, our method doesn’t require
regular discarding or resetting of opacity.

We compare against 3DGS as it is conceptually close to our
method, Instant NGP as a state of the art hybrid method, and to
NeX as an implicit method with a focus on specular effects. We
train 3DGS and INGP for similar training times using the respective
publicly available code. As NeX requires tens of hours to train we
use the numbers reported in their paper and train our method in
the same (lower) resolution.

As we show in Figure 6 for scenes with highly anisotropic re-
flections which cannot be faked by floating geometry the spherical
harmonics encoding used in 3DGS is not enough. Instant NGP fares
better in reproducing some specular effects, but the capacity of the
small network cannot handle all the collisions efficiently, leading to
blurring and fogginess. Our method learns correctly to optimize the
anisotropy between world position and viewing direction which
results in reflections actually moving in world space as we move the
camera. In our video please appreciate that many of the reflections
are parameterized by a few Gaussians (demonstrated through the
color-coded Gaussians) resulting in fewer ones necessary to achieve
higher quality. These observations are also reflected in PSNR in Ta-
ble 2. Since our method utilizes fewer Gaussians, it also has overall
shorter evaluation times. In Table 3 we show the inference times
for our method and 3DGS using the Python implementation of
the splatting renderer provided by the 3DGS authors. Note that
3DGS also provides a C++ renderer, part of [Bonopera et al. 2020],
which provides much better performance than the Python version
but our 6D parameterization could be integrated within the same
framework to profit from similar performance gains.

N-Dimensional Gaussians for Fitting of High Dimensional Functions SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Table 2: Quantitative evaluation of our method against 3DGS,

Instant NGP and NeX for our two scenes. We show training

resolution, training times and PSNR for all methods. Nex

metrics are provided from their paper.

INGP

Resolution

26.32

25.70

28.39 27.58

25.76

28.16

30.06 29.07

>18 hours

21 mins21 mins

>18 hours31.43

27.23

1600 x 900 1600 x 1200

Resolution 1008 x 567 1008 x 756

NeX

Table 3: We report the number of Gaussians at the end of

training for our method and 3DGS as well as the inference

time for both methods using the Python splatting renderer

of [Kerbl et al. 2023].

70.57

24.5 41.23

13.6 105

2.7 1053.2 105

10.1 10562.92

Inference (ms) Inference (ms)

Compared to NeX we demonstrate similar PSNR, on average,
within half an hour of training compared to the tens of hours
required by NeX. Also note that training NeX in the same higher
resolution as the previous results required more memory than the
24 GB of available GPU memory in our tests.

LSH Ablation. Our tile-based high dimensional culling using
projections allows us to train and render fast our mixtures. We
showcase these advantages against brute force evaluation in Table 4
for the synthetic scenes application. During training we use lower
resolution images and in that case the 16 by 16 tiles cover a larger
area resulting in fewer Gaussians culled. Still avoiding the back
propagation step for these Gaussians saves a considerable amount
of time for each training iteration.

At inference time each tile covers a small area and as a result a
big percentage of the Gaussians can be discarded resulting in three
times faster evaluation.

To test the impact of the chosen confidence interval on per-
formance and image quality we experiment with different values
including our choice of 3𝜎 and report the results in Figure 5. Lower
confidence values lead to more aggressive culling with lower av-
erage evaluations (more Gaussians discarded) and faster inference
times. But in Figure 5 we observe that for values lower than the
chosen 3𝜎 threshold, blocky artifacts start to appear (highlighted by

Table 4: Iteration time (during training and inference) of our

method (with and without LSH culling), the Pixel Generator

and the Hash Grid baselines for the Bathroom scene.

Brute Force

Hash Grid

Ours

Pixel
Generator

7856.0

-

-

7856.0

6208.2

-

-

1984.89

Training Inference
Avg. EvalsTime (s) Avg. EvalsTime (ms)

3170.194

0.091

0.397 210

50.010

131

red arrows) due to the aggressive culling. This means that for these
values the culling discards Gaussians which normally contributed
to the image leading to artifacts.

Brute ForceLSH Threshold

7856.0 1984.89 872.16 477.31

Inference (ms)

Avg. Evaluations

245 192 81 65131

3 (Ours)6 2 1.5

4319.74

Brute Force 3 (Ours)6 2 1.5

Figure 5: Demonstration of the impact to image quality and

inference time for different values of LSH threshold. With

red arrows we point out the artifacts that appear when the

threshold is set to lower values than our choice of 3𝜎 .

6 LIMITATIONS AND FUTUREWORK

Naturally, any representation fitting to reference data is prone
to overfitting and aliasing problems, to which our method is no
exception. It is well-known that this challenge increases with the
number of variables affecting the results [Figueiredo and Jain 2002,
Sect. 5.1.3], calling for according increases in training sample size.
In our experiments fitting to real-world view points, we avoid
overfitting our directionally adaptive representation to sparse view
point sets using typical directional regularization [Niemeyer et al.
2022]: Smoothness of directionally varying components is enforced
in-between captured view points by randomly perturbing training
directions to cover the full space. Even with this regularization real-
world 360 datasets are more challenging in their data distribution
and capture quality, and it could require specific tuning/heuristics
which we leave for future work.

Adapting our refinement scheme in the future to other covari-
ance parameterizations, such as the one used in 3DGS could help
reduce the amount of hyperparameters required. However such an
adaptation is non-trivial due to additional conversions required in

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Diolatzis et al.

the materialization (composite covariance to quaternions + scaling)
and would require extra care to not degrade performance overall.

The computational scaling with respect to number of input di-
mensions differs for implicit neural and explicit Gaussian repre-
sentations. In the plain Gaussian mixture parameterization used
throughout this paper, storage cost per Gaussian component grows
quadratically with the number of dimensions. More sparse param-
eterizations would be possible (e.g. trading full inter-dimensional
adaptivity for fewer principal component axes), but are subject to
future work. We note that while in contrast, neural representations
may implicitly expose sub-quadratic scaling behavior, no such rep-
resentations suitable for interactive rendering are currently easily
extensible to high-dimensional domains.

The choice of representations and their parameterization has
observable impact on results. Like in previous work [Kerbl et al.
2023], the representation of discontinuities by Gaussian mixture
results in somewhat scale-dependent sharpness, whereas other rep-
resentations such as implicit neural models using ReLU activations
are naturally well-suited to place truly discontinuous boundaries.
Studying alternative distribution primitives as well as alternative
distribution parameters for the best control, convergence, and com-
pactness of resulting representations, could be interesting future
work. Capturing coherent motion of primarily visible objects is
another interesting open issue for follow-up work. While in princi-
ple, our Gaussian components can be moved easily in the spatial
domain, we note that such a manual animation would be in con-
trast to captured time-dependent signals: Even time-dependent
evaluation of our representation is effectively a slice through a
static high-dimensional Gaussian mixture, therefore our method
does not yet implicitly solve correspondence-finding of coherently
transformed objects. We expect interesting challenges for future
high-dimensional explicit representations to reach this secondary
objective.

7 CONCLUSION

We demonstrated feasibility of efficiently constructing compact
explicit representations for the reconstruction of high-dimensional
data in interactive computer graphics applications. In particular,
we achieve similar or higher quality in our results when compared
to previous methods, without leveraging domain knowledge that is
restricted to lower-dimensional domains. We hope that our insights
can inspire both explicit and neural implicit representations going
forward to expand their scope to adaptivity in higher-dimensional
input domains, either by way of improved fitting of explicit primi-
tives or by way of derived parametric encodings.

The locality of parameter impact in explicit representations is a
strong property not only for culling and efficiency purposes, but
also in the sense of distributed storage capacity, providing good
opportunities for an implicit adaptive scaling to larger input do-
mains. In contrast, implicit neural representations commonly assign
a certain fixed capacity to certain parts of the domain. Ultimately,
however, both approaches will still require efficient large-scale
culling mechanisms (e.g. using hierarchical schemes) accounting
for high variability with respect to high-dimensional inputs, which
is another interesting area of future work.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their valuable
comments and helpful suggestions. We also thank Laurent Belcour
and Sebastian Herholz for their valuable input and suggestions. G.
Kopanas was supported by ERC Advanced grant FUNGRAPH No.
788065 (http://fungraph.inria.fr).

REFERENCES

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
2015. Practical and optimal LSH for angular distance. Advances in neural information
processing systems 28 (2015).

Sebastien Bonopera, Peter Hedman, Jerome Esnault, Siddhant Prakash, Simon Ro-
driguez, Theo Thonat, Mehdi Benadel, Gaurav Chaurasia, Julien Philip, and
George Drettakis. 2020. sibr: A System for Image Based Rendering. https:
//sibr.gitlabpages.inria.fr/

Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell, W Richard Fright,
Bruce C McCallum, and Tim R Evans. 2001. Reconstruction and representation of
3D objects with radial basis functions. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques. 67–76.

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini
De Mello, Orazio Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al.
2022. Efficient geometry-aware 3D generative adversarial networks. In Proc. IEEE
CVPR. 16123–16133.

Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi Yu, Junsong Yuan, and Yi
Xu. 2023. NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). 4182–4194.

Huong Quynh Dinh, Greg Turk, and Greg Slabaugh. 2002. Reconstructing surfaces by
volumetric regularization using radial basis functions. IEEE transactions on pattern
analysis and machine intelligence 24, 10 (2002), 1358–1371.

Stavros Diolatzis, Julien Philip, and George Drettakis. 2022. Active exploration for
neural global illumination of variable scenes. ACM Trans. Graph. 41, 5 (2022), 1–18.

SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos,
Marta Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,
et al. 2018. Neural scene representation and rendering. Science 360, 6394 (2018),
1204–1210.

M.A.T. Figueiredo and A.K. Jain. 2002. Unsupervised learning of finite mixture models.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 3 (2002), 381–396.
https://doi.org/10.1109/34.990138

Jonathan Granskog, Fabrice Rousselle, Marios Papas, and Jan Novák. 2020. Composi-
tional neural scene representations for shading inference. ACM Trans. Graph. 39, 4
(2020), 135–1.

Antoine Guédon and Vincent Lepetit. 2023. Sugar: Surface-aligned gaussian splatting
for efficient 3dmesh reconstruction and high-quality mesh rendering. arXiv preprint
arXiv:2311.12775 (2023).

Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016.
Product importance sampling for light transport path guiding. In Comp. Graph.
Forum, Vol. 35. Wiley Online Library, 67–77.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019. Taichi: a language for high-performance computation on spatially sparse
data structures. ACM Trans. Graph. 38, 6 (2019), 1–16.

Wenzel Jakob, Christian Regg, and Wojciech Jarosz. 2011. Progressive expectation-
maximization for hierarchical volumetric photon mapping. In Comp. Graph. Forum,
Vol. 30. 1287–1297.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. Dr.Jit: A
Just-In-Time Compiler for Differentiable Rendering. Transactions on Graphics
(Proceedings of SIGGRAPH) 41, 4 (July 2022). https://doi.org/10.1145/3528223.
3530099

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.
3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Trans. Graph.
42, 4 (2023).

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The efficient
transformer. arXiv preprint arXiv:2001.04451 (2020).

Jaroslav Krivánek, Kadi Bouatouch, Sumanta N Pattanaik, and Jiri Zara. 2006. Mak-
ing Radiance and Irradiance Caching Practical: Adaptive Caching and Neighbor
Clamping. Rendering Techniques 2006 (2006), 127–138.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. 2018. Noise2Noise: Learning image restoration without
clean data. arXiv preprint arXiv:1803.04189 (2018).

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields
for view synthesis. Comm. ACM 65, 1 (2021), 99–106.

Thomas Müller. 2021. tiny-cuda-nn. https://github.com/NVlabs/tiny-cuda-nn

http://fungraph.inria.fr
https://sibr.gitlabpages.inria.fr/
https://sibr.gitlabpages.inria.fr/
https://doi.org/10.1109/34.990138
https://doi.org/10.1145/3528223.3530099
https://doi.org/10.1145/3528223.3530099
https://github.com/NVlabs/tiny-cuda-nn

N-Dimensional Gaussians for Fitting of High Dimensional Functions SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph. 41, 4 (2022), 1–15.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time
neural radiance caching for path tracing. ACM Trans. Graph. 40, 4 (2021), 1–16.

Michael Niemeyer, Jonathan T Barron, Ben Mildenhall, Mehdi SM Sajjadi, Andreas
Geiger, and Noha Radwan. 2022. Regnerf: Regularizing neural radiance fields for
view synthesis from sparse inputs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 5480–5490.

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.
2013. Global illumination with radiance regression functions. ACM Trans. Graph.
32, 4 (2013), 130–1.

Lukas Ruppert, Sebastian Herholz, and Hendrik P. A. Lensch. 2020. Robust fitting of
parallax-aware mixtures for path guiding. ACM Trans. Graph. 39, 4, Article 147
(aug 2020), 15 pages. https://doi.org/10.1145/3386569.3392421

Florian Simon, Alisa Jung, Johannes Hanika, and Carsten Dachsbacher. 2018. Selective
guided sampling with complete light transport paths. Transactions on Graphics
(Proceedings of SIGGRAPH Asia) 37, 6 (Dec. 2018). https://doi.org/10.1145/3272127.
3275030

Noah Snavely, Steven M Seitz, and Richard Szeliski. 2006. Photo tourism: exploring
photo collections in 3D. In ACM siggraph 2006 papers. 835–846.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5459–5469.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
geometric level of detail: Real-time rendering with implicit 3d shapes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11358–
11367.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. 2020.
Fourier features let networks learn high frequency functions in low dimensional
domains. Advances in neural information processing systems 33 (2020), 7537–7547.

Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, Wang
Yifan, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lom-
bardi, et al. 2022. Advances in neural rendering. In Comp. Graph. Forum, Vol. 41.
703–735.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and
Pratul P. Srinivasan. 2022. Ref-NeRF: Structured View-Dependent Appearance for
Neural Radiance Fields. CVPR (2022).

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.
On-line learning of parametric mixture models for light transport simulation. ACM
Trans. Graph. 33, 4 (2014), 1–11.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. Advances in Neural Information Processing Systems 34
(2021), 27171–27183.

Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supasorn
Suwajanakorn. 2021. NeX: Real-time View Synthesis with Neural Basis Expansion.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.
Plenoctrees for real-time rendering of neural radiance fields. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 5752–5761.

Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li. 2020. Physics-based differentiable
rendering: a comprehensive introduction. ACM SIGGRAPH 2020 Courses 14 (2020),
1–14.

Kun Zhou, Zhong Ren, Stephen Lin, Hujun Bao, Baining Guo, and Heung-Yeung Shum.
2008. Real-time smoke rendering using compensated ray marching. In ACM Trans.
Graph. (SIGGRAPH). 1–12.

https://doi.org/10.1145/3386569.3392421
https://doi.org/10.1145/3272127.3275030
https://doi.org/10.1145/3272127.3275030

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Diolatzis et al.

Tools

CD

Ours

Ours 3DGS INGP

INGP3DGS

Training Time: 23 mins 23 mins22 mins

Training Time: 22 mins 21 mins 22 mins

Figure 6: Qualitative results of our method compared 3DGS and Instant-NGP for two different scenes with complex view

dependent effects.

N-Dimensional Gaussians for Fitting of High Dimensional Functions SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Figure 7: We compare with an implicit (Pixel Generator) and hybrid (Hash Grid) method for our application of shading variable

synthetic scenes. Our method achieves high quality in a fewminutes of training while enabling fast rendering and interactivity.

	Abstract
	1 Introduction
	2 Related Work
	2.1 High-Dimensional Anisotropic Distribution Fitting
	2.2 Gaussian Mixtures in Rendering
	2.3 Implicit Neural Rendering
	2.4 Hybrid & Explicit Representations

	3 Method
	3.1 N-Dimensional Gaussian Parameterization
	3.2 N-Dimensional Gaussians Culling
	3.3 Optimization-Controlled Refinement

	4 Applications
	4.1 Global Illumination with Variability
	4.2 Volumetric Radiance Fields

	5 Comparisons & Ablations
	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

